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The answer is that every solution of each of the above equa-
tions is periodic with the same period. What is the period?
What is it that makes every solution of an equation periodic
with the same period?

Is there a necessary and/or sufficient condition that can be
used to determine this in an easily verifiable way?

2. IS THERE A PERIODIC PATTERN HERE?
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Unfortunately, there is no pattern. Why?

3. CAN WE TrusT THE COMPUTER?

The gingerbreadman difference equation is the piece-
wise linear difference equation

Tp+1 = |$n! —Zpatl, m=0,1,... (1)

which was investigated by Devaney (see [2]) and was shown
to be chaotic in certain regions and stable in others. The
name of this equation is due to the fact that the orbits of
certain points in the plane fill a region that looks like a “gin-
gerbreadman”.

If you use a computer to plot the orbit of the solution
{2} _; of Eq.(1) with initial conditions
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the computer may predict that after 100,000 iterations, the
solution is still not periodic. Although a computer may
be fooled due to round-off and truncation errors, one can
show that the orbit of the solution of Eq.(1) with initial con-

dition
1
(z-1,%0) = (—Ea 0)

is periodic with period 126. So, we cannot trust the
computer. However, the computer is an indispensable tool
in our investigations. '

It is interesting to note that the gingerbreadman difference
equation is a special case of the max difference equation
max{z7, A}
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Indeed, the change of variables

AT Gf A>1
T, =1 €% if A=1

AT if 0<A<1
reduces Eq.(2) to the difference equation

Unt1 = |Yn| —Yn-1+6, n=0,1,..

where
-1 if A>1
v=4 0 #4f A=1
i if A<1
Note that Eq.(2) with
Ae(0,1)

reduces to the gingerbreadman difference equation (1).

When
A=1

Eq.(2) reduces to the equation
Yn+1 = Iyn| —Yn-1, M= 0715"‘ £ (3)
Note that every solution of Eq.(4) is periodic with period 9.

Open Problem 1. What is the set of initial conditions
(z_1,z0) € (0,00) % (0, 0)
through which the solutions of Eq.(1) are periodic?

Are there values of A, other than A = 1, for which every
solution of Eq.(2) is periodic with the same period?

What do the solutions of Eq.(2) do for values of A not
equal to 17



Conjecture 1. Assume k, A € [0, 00).
Show that every positive solution of the equation
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is bounded if and only if k¥ € [0, 2) and every positive solution
of the equation

k
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is bounded if and only if k£ € [0, 3).

4. THE SIMPLEST AND MOST DIFFICULT OPEN
PROBLEM AND CONJECTURE FOR Y2K—...

The simplest and most difficult open problem and conjec-
ture for several years now are the following:

Conjecture 2. Assume e, 8 € (0,00). Show that every posi-
tive solution of the equation

:cnﬂzLﬁwn, e Lo o s
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has a finite limit. (See [7] and [8]).

Open Problem 2. Exhibit all initial points (z_3,7¢) € R?
through which the equation '

Tn—1
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Tn

is well defined for all n > 0 and investigate the character of
its solutions. (See [1]).



5. WHAT HAVE WE LEARNED FROM THE FOLLOWING
TWO EQUATIONS?

$n+1=5—6~7%@, ==0,1,... (4)

Tp+1 = /Zn ++/Tn-1, n=0,1,... (5)

These equations have taught us some deep global attrac-
tivity results for difference equations. (See [3]-[9]).

Both of these equations are of the form

Tnyl1 = f(il?n, ITpn—-1, N = 0, 1, S (6)

where the function f is increasing in both variables. Further-
more, for Eq.(6) the function f has the property that

flz,z) =z forevery z
while for Eq.(5) the function f satisfies the negative feedback
property
(flz,z)—z)(z—T)<0 forz#7
where T is the equilibrium of the equation.

Under either of the assumptions above, every solution of
Eq.(6) has a limit,.

These two global results have been of paramount impor-
tance in establishing the global character of solutions of some
rational difference equations and in several applications.

What do the following models have in common
with the difference equation

Bt =oafly F A lygy B=0,1..7



1. The Perennial Grass Models:

(1) ZTpy1=azp,+be ™, n=0,1,...
(1) Tpi1=azp+ (b+cTp1)e™®, n=0,1,...

where a,c € (0,1) and b € (0, 00).

2. The Age-Structured Population Model:

Tpai = (02, =+ bz )e™, n=0,1,...

where a € (0,1) and b € (0,00).

3. The Mosquito Model

Tn+1 = (@Tp + bTp—1e”"* Ve ™, n=0,1,...
? bJ

where a € (0,1) and b € (0, c0).

4. The Beddington-Holt Stock-Recruitment Model

bTp_1
1+ czp_1 +dz,’
where a € (0,1) and b,¢,d € (0, 00).

Tpel = ATy + =0, 1..:

5. The Larval-Pupal-Adult (LPA) Flour Beetle Model

Tpdl, = G+ by _se 2700 p =01, ..

where a € (0,1), b € (0,00), c1,¢2 € [0,00) with ¢; +¢2 > 0.



6. CONVERGENCE TO PERIODIC SOLUTIONS

The following are difference equations with the property
that every positive solution converges to a periodic solution,
as indicated. At present we are unable to determine the limit
in terms of the initial conditions of the solution. This is a
problem of paramount importance and great difficulty.
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7. WHAT DO THE FOLLOWING EQUATIONS HAVE IN

COMMON?
1 A
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The answer is that every solution of each of the above equa-

tions is eventually periodic. What is the period in each case?
See [4].
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8. IN THE SPIRIT OF THE (3z + 1) CONJECTURE

The (3z + 1) conjecture states that every solution of the
difference equation

_ [ Bl f 2, s odd .
Tp+l = s : . = YLy
B if z, 1s even

with initial condition
zo € {1,2,...}
is eventually the 2-cycle (1, 2).
On the other hand, if
zged{...,—-2,-1}
then it is conjectured that every solution is eventually either:

The one-cycle

("1)7

(=i, =T, =10)

the three-cycle

or the eleven-cycle
(—=17,—25,—-37,—55, —82, —41, —61, —91, —136, —68, —34)

Conjecture 3. Assume that the initial conditions are integers
with greatest common divisor equal to 1.

Then show that every solution of the difference equation

o a1 if (Tn+ Tn_1) is even :
Ln+l = 2 . ’ =1, 1,
Tn+Tpn-1 if (Tn+ Zp-1) is odd

is eventually:
(0,1,1), (0,-1,-1), or(3,2,5,7,1,-3,-2,—5, -7, —-1)
(See [4]).
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Similar problems are of interest for the equation

b

i I—“-"-g‘-"ﬂ:l if 3 divides z,, + Tp—1
1= :
s Ty + Tp—1, otherwise

forn=0,1,..., where z_; and zg are integers.

Conjecture 4. The following statements are true:

(a) Every positive solution which is not eventually a
three-cycle converges to oo.
(b) There exist unbounded solutions.
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